Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 28 results ...

Adeyeye, K and Emmitt, S (2017) Multi-scale, integrated strategies for urban flood resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 494-520.

Ahmed, I (2016) Housing and resilience: case studies from the Cook Islands. International Journal of Disaster Resilience in the Built Environment, 7(05), 489-500.

Ali, R A, Mannakkara, S and Wilkinson, S (2020) Factors affecting successful transition between post-disaster recovery phases: a case study of 2010 floods in Sindh, Pakistan. International Journal of Disaster Resilience in the Built Environment, 11(05), 597–614.

Baroudi, B and Rapp, R (2016) Disaster restoration project management: leadership education and methods. International Journal of Disaster Resilience in the Built Environment, 7(05), 434-43.

Choi, C Y and Honda, R (2019) Motive and conflict in the disaster recovery process. International Journal of Disaster Resilience in the Built Environment, 10(05), 408–19.

Durage, S W, Wirasinghe, S C and Ruwanpura, J Y (2017) Tornado mitigation network analysis and simulation. International Journal of Disaster Resilience in the Built Environment, 8(05), 478-93.

Feofilovs, M, Romagnoli, F, Gotangco, C K, Josol, J C, Jardeleza, J M P, Litam, J E, Campos, J I and Abenojar, K (2020) Assessing resilience against floods with a system dynamics approach: a comparative study of two models. International Journal of Disaster Resilience in the Built Environment, 11(05), 615–29.

  • Type: Journal Article
  • Keywords: System Dynamics; Knowledge sharing; Modelling; Natural disasters; Urban resilience; Flooding;
  • ISBN/ISSN: 1759-5908
  • URL: https://doi.org/10.1108/IJDRBE-02-2020-0013
  • Abstract:
    This paper aims to present the concepts of two different ways of generating a dynamic structure of the urban system to further allow in understanding specific urban behavior facing against flood and further evaluate the potential effect of specific resilience strategies aiming to decrease the exposure and vulnerability of the system. Design/methodology/approach Two system dynamics model structures are presented in form of Casual Loop Diagrams. Findings The main differences among the tow approaches are the time horizon and the approach that regulates the assessment of the resilience through a dynamic composite indicator: the first model refers to baseline at initial simulation time; the second model is focused on the ratio service supply to demand. Research limitations/implications Within the approach, the purpose is to properly and efficiently evaluate the effect of different Flood Risk Management strategies, i.e. prevention, defence, mitigation, preparation and recovery for consistent and resilient flood governance plans with different type of resilience scenarios. Originality/value The need for such tool is underlined by a lack on the assessment of urban resilience to flood as whole, considering the physical and social dimensions and the complex interaction among their main components. There are several assessment tools based on an indicator approach that have been proposed to meet this need. Nevertheless, indicator-based approach has the limitation to exclude the complexity of the system and its systemic interaction in terms of feedbacks’ effects among the identified components or variables selected for the system description. This peculiarity can be provided by System Dynamics modeling.

Firouzi Jahantigh, F and Jannat, F (2019) Analyzing the sequence and interrelations of Natech disasters in Urban areas using interpretive structural modelling (ISM). International Journal of Disaster Resilience in the Built Environment, 10(05), 392–407.

Ganguly, K K, Padhy, R K and Rai, S S (2017) Managing the humanitarian supply chain: a fuzzy logic approach. International Journal of Disaster Resilience in the Built Environment, 8(05), 521-36.

Harisuthan, S, Hasalanka, H, Kularatne, D and Siriwardana, C (2020) Applicability of the PTVA-4 model to evaluate the structural vulnerability of hospitals in Sri Lanka against tsunami. International Journal of Disaster Resilience in the Built Environment, 11(05), 581–96.

Huong, H T L and Dzung, L H (2020) Criteria for flood warning levels in Vietnam. International Journal of Disaster Resilience in the Built Environment, 11(05), 645–58.

Ismail, F Z, Halog, A and Smith, C (2017) How sustainable is disaster resilience? An overview of sustainable construction approach in post-disaster housing reconstruction. International Journal of Disaster Resilience in the Built Environment, 8(05), 555-72.

Kashem, S B (2019) Housing practices and livelihood challenges in the hazard-prone contested spaces of rural Bangladesh. International Journal of Disaster Resilience in the Built Environment, 10(05), 420–34.

Kimura, N, Tai, A and Hashimoto, A (2017) Flood caused by driftwood accumulation at a bridge. International Journal of Disaster Resilience in the Built Environment, 8(05), 466-77.

Kuittinen, M (2016) Does the use of recycled concrete lower the carbon footprint in humanitarian construction?. International Journal of Disaster Resilience in the Built Environment, 7(05), 472-88.

Low, S P, Gao, S and Wong, G Q E (2017) Resilience of hospital facilities in Singapore’s healthcare industry: a pilot study. International Journal of Disaster Resilience in the Built Environment, 8(05), 537-54.

Maal, M and Wilson-North, M (2019) Social media in crisis communication – the “do’s” and “don’ts”. International Journal of Disaster Resilience in the Built Environment, 10(05), 379–91.

Mandal, S, Sarathy, R, Korasiga, V R, Bhattacharya, S and Dastidar, S G (2016) Achieving supply chain resilience: The contribution of logistics and supply chain capabilities. International Journal of Disaster Resilience in the Built Environment, 7(05), 544-62.

Mukhopadhyay, S, Halligan, J and Hastak, M (2016) Assessment of major causes: nuclear power plant disasters since 1950. International Journal of Disaster Resilience in the Built Environment, 7(05), 521-43.

Naja, M K and Baytiyeh, H (2016) Risk assessment of high schools in Lebanon for potential terrorist threat. International Journal of Disaster Resilience in the Built Environment, 7(05), 460-71.

Oloo, J O and Omondi, P (2017) Strengthening local institutions as avenues for climate change resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 573-88.

Ongkowijoyo, C S, Doloi, H and Mills, A (2019) Participatory-based risk impact propagation and interaction pattern analysis using social network analysis. International Journal of Disaster Resilience in the Built Environment, 10(05), 363–78.

Pamungkas, A and Purwitaningsih, S (2019) Green and grey infrastructures approaches in flood reduction. International Journal of Disaster Resilience in the Built Environment, 10(05), 343–62.

Rafi, M M, Lodi, S H, Ahmed, M, Kumar, A and Verjee, F (2016) Development of building inventory for northern Pakistan for seismic risk reduction. International Journal of Disaster Resilience in the Built Environment, 7(05), 501-20.

Rautela, P, Joshi, G C and Ghildiyal, S (2019) Economics of seismic safety for earthquake-prone Himalayan province of Uttarakhand in India. International Journal of Disaster Resilience in the Built Environment, 10(05), 317–42.

Shahin, M, Billah, M, Islam, M M, Parvez, A and Zaman, A M (2020) Cyclone shelters need sustainable development. International Journal of Disaster Resilience in the Built Environment, 11(05), 659–78.

Subedi, J, Ghimire, R M, Neupane, R P and Amatya, S (2016) Cost difference of buildings in Kathmandu constructed with and without earthquake safer features. International Journal of Disaster Resilience in the Built Environment, 7(05), 444-59.

Tasantab, J C, Gajendran, T, von Meding, J and Maund, K (2020) Perceptions and deeply held beliefs about responsibility for flood risk adaptation in Accra Ghana. International Journal of Disaster Resilience in the Built Environment, 11(05), 631–44.