Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 28 results ...

Adeyeye, K and Emmitt, S (2017) Multi-scale, integrated strategies for urban flood resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 494-520.

Ahmed, I (2016) Housing and resilience: case studies from the Cook Islands. International Journal of Disaster Resilience in the Built Environment, 7(05), 489-500.

Ali, R A, Mannakkara, S and Wilkinson, S (2020) Factors affecting successful transition between post-disaster recovery phases: a case study of 2010 floods in Sindh, Pakistan. International Journal of Disaster Resilience in the Built Environment, 11(05), 597–614.

Baroudi, B and Rapp, R (2016) Disaster restoration project management: leadership education and methods. International Journal of Disaster Resilience in the Built Environment, 7(05), 434-43.

Choi, C Y and Honda, R (2019) Motive and conflict in the disaster recovery process. International Journal of Disaster Resilience in the Built Environment, 10(05), 408–19.

Durage, S W, Wirasinghe, S C and Ruwanpura, J Y (2017) Tornado mitigation network analysis and simulation. International Journal of Disaster Resilience in the Built Environment, 8(05), 478-93.

Feofilovs, M, Romagnoli, F, Gotangco, C K, Josol, J C, Jardeleza, J M P, Litam, J E, Campos, J I and Abenojar, K (2020) Assessing resilience against floods with a system dynamics approach: a comparative study of two models. International Journal of Disaster Resilience in the Built Environment, 11(05), 615–29.

Firouzi Jahantigh, F and Jannat, F (2019) Analyzing the sequence and interrelations of Natech disasters in Urban areas using interpretive structural modelling (ISM). International Journal of Disaster Resilience in the Built Environment, 10(05), 392–407.

Ganguly, K K, Padhy, R K and Rai, S S (2017) Managing the humanitarian supply chain: a fuzzy logic approach. International Journal of Disaster Resilience in the Built Environment, 8(05), 521-36.

  • Type: Journal Article
  • Keywords: building performance; disaster response; disaster management; disaster mitigation; natural disasters; crisis management; fuzzy logic; performance management; humanitarian supply chain management; humanitarian assistance
  • ISBN/ISSN:
  • URL: https://doi.org/10.1108/IJDRBE-07-2015-0038
  • Abstract:
    Purpose Humanitarian supply chain management (HSCM) in today’s environment faces the challenges such as information availability, inventory management, collaboration, logistics related issues and preparedness. The purpose of this paper is to evaluate the HSCM performance, considering the consequences in terms of operation, recovery and responsiveness based on the fuzzy estimates of the components presented. Design/methodology/approach In the study, triangulation approach was adapted for collecting data and developing a hierarchical structure for humanitarian supply chain performance assessment. The relationships between HSCM performance and its suddenness and required preparedness are depicted by cause and effect diagrams. The concepts of fuzzy association and fuzzy composition are applied to identify relationships. Findings In the hierarchy presented, the performance in a disaster situation, preparedness and suddenness of the situation and factors that influence the above are modeled. The taxonomy is developed for describing the relationship between factors, their likelihoods and impacts to achieve consistent quantification. Research limitations/implications The study considers case studies from Indian conditions; however, conditions in other countries and their practices for the disaster management may vary to certain extent. Practical implications A methodology presented for evaluating the exposures in considering the consequences in terms of responsiveness, operations, recovery, mitigation and emergency response. The study may help the humanitarian relief practitioners to understand the insights of the disaster situations using the proposed framework. Originality/value A common language for describing the different factors of HSCM is presented, which includes terms for quantifying likelihoods and impacts. The concept of fuzzy association and fuzzy composition has been applied to identify relationships between sources and consequences on HSCM performance. The use of descriptive linguistic variables is ensured through the implementation of fuzzy logic.

Harisuthan, S, Hasalanka, H, Kularatne, D and Siriwardana, C (2020) Applicability of the PTVA-4 model to evaluate the structural vulnerability of hospitals in Sri Lanka against tsunami. International Journal of Disaster Resilience in the Built Environment, 11(05), 581–96.

Huong, H T L and Dzung, L H (2020) Criteria for flood warning levels in Vietnam. International Journal of Disaster Resilience in the Built Environment, 11(05), 645–58.

Ismail, F Z, Halog, A and Smith, C (2017) How sustainable is disaster resilience? An overview of sustainable construction approach in post-disaster housing reconstruction. International Journal of Disaster Resilience in the Built Environment, 8(05), 555-72.

Kashem, S B (2019) Housing practices and livelihood challenges in the hazard-prone contested spaces of rural Bangladesh. International Journal of Disaster Resilience in the Built Environment, 10(05), 420–34.

Kimura, N, Tai, A and Hashimoto, A (2017) Flood caused by driftwood accumulation at a bridge. International Journal of Disaster Resilience in the Built Environment, 8(05), 466-77.

Kuittinen, M (2016) Does the use of recycled concrete lower the carbon footprint in humanitarian construction?. International Journal of Disaster Resilience in the Built Environment, 7(05), 472-88.

Low, S P, Gao, S and Wong, G Q E (2017) Resilience of hospital facilities in Singapore’s healthcare industry: a pilot study. International Journal of Disaster Resilience in the Built Environment, 8(05), 537-54.

Maal, M and Wilson-North, M (2019) Social media in crisis communication – the “do’s” and “don’ts”. International Journal of Disaster Resilience in the Built Environment, 10(05), 379–91.

Mandal, S, Sarathy, R, Korasiga, V R, Bhattacharya, S and Dastidar, S G (2016) Achieving supply chain resilience: The contribution of logistics and supply chain capabilities. International Journal of Disaster Resilience in the Built Environment, 7(05), 544-62.

Mukhopadhyay, S, Halligan, J and Hastak, M (2016) Assessment of major causes: nuclear power plant disasters since 1950. International Journal of Disaster Resilience in the Built Environment, 7(05), 521-43.

Naja, M K and Baytiyeh, H (2016) Risk assessment of high schools in Lebanon for potential terrorist threat. International Journal of Disaster Resilience in the Built Environment, 7(05), 460-71.

Oloo, J O and Omondi, P (2017) Strengthening local institutions as avenues for climate change resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 573-88.

Ongkowijoyo, C S, Doloi, H and Mills, A (2019) Participatory-based risk impact propagation and interaction pattern analysis using social network analysis. International Journal of Disaster Resilience in the Built Environment, 10(05), 363–78.

Pamungkas, A and Purwitaningsih, S (2019) Green and grey infrastructures approaches in flood reduction. International Journal of Disaster Resilience in the Built Environment, 10(05), 343–62.

Rafi, M M, Lodi, S H, Ahmed, M, Kumar, A and Verjee, F (2016) Development of building inventory for northern Pakistan for seismic risk reduction. International Journal of Disaster Resilience in the Built Environment, 7(05), 501-20.

Rautela, P, Joshi, G C and Ghildiyal, S (2019) Economics of seismic safety for earthquake-prone Himalayan province of Uttarakhand in India. International Journal of Disaster Resilience in the Built Environment, 10(05), 317–42.

Shahin, M, Billah, M, Islam, M M, Parvez, A and Zaman, A M (2020) Cyclone shelters need sustainable development. International Journal of Disaster Resilience in the Built Environment, 11(05), 659–78.

Subedi, J, Ghimire, R M, Neupane, R P and Amatya, S (2016) Cost difference of buildings in Kathmandu constructed with and without earthquake safer features. International Journal of Disaster Resilience in the Built Environment, 7(05), 444-59.

Tasantab, J C, Gajendran, T, von Meding, J and Maund, K (2020) Perceptions and deeply held beliefs about responsibility for flood risk adaptation in Accra Ghana. International Journal of Disaster Resilience in the Built Environment, 11(05), 631–44.