Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 35 results ...

Adekunle, T O (2019) Field measurements of comfort, seasonal performance and cold stress in cross-laminated timber (CLT) school buildings. Smart and Sustainable Built Environment, 9(04), 655–73.

Aggarwal, A, Rani, A and Kumar, M (2019) A robust method to authenticate car license plates using segmentation and ROI based approach. Smart and Sustainable Built Environment, 9(04), 737–47.

Aggarwal, T and Solomon, P (2019) Quantitative analysis of the development of smart cities in India. Smart and Sustainable Built Environment, 9(04), 711–26.

Agyekum, K, Adinyira, E and Ampratwum, G (2020) Factors driving the adoption of green certification of buildings in Ghana. Smart and Sustainable Built Environment, 9(04), 595–613.

de Laat, P (2019) Resource depletion: where is an intervention most effective?. Smart and Sustainable Built Environment, 8(04), 307–21.

Dell'Anna, F, Bottero, M, Becchio, C, Corgnati, S P and Mondini, G (2020) Designing a decision support system to evaluate the environmental and extra-economic performances of a nearly zero-energy building. Smart and Sustainable Built Environment, 9(04), 413–42.

Dewan, S and Singh, L (2020) Use of blockchain in designing smart city. Smart and Sustainable Built Environment, 9(04), 695–709.

du Toit, J and Wagner, C (2020) The effect of housing type on householders' self-reported participation in recycling. Smart and Sustainable Built Environment, 9(04), 395–412.

Ekemode, B G (2019) Impact of urban regeneration on commercial property values in Osogbo, Osun State, Nigeria. Smart and Sustainable Built Environment, 9(04), 557–71.

Eslamirad, N, Malekpour Kolbadinejad, S, Mahdavinejad, M and Mehranrad, M (2020) Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran. Smart and Sustainable Built Environment, 9(04), 361–74.

Ghosh, S, Kochhar, K, Sharma, A, Kaushal, S, Agrawal, J, Garg, A, Kumar, A and Dugar, Y (2016) Investigating structure generated turbulence using an unmanned aerial vehicle: A prelude to optimal ventilation strategies in India’s upcoming smart cities. Smart and Sustainable Built Environment, 5(04), 372-92.

Ghosh, S, Kochhar, K, Sharma, A, Kaushal, S, Agrawal, J, Garg, A, Kumar, A and Dugar, Y (2016) Investigating structure generated turbulence using an unmanned aerial vehicle: A prelude to optimal ventilation strategies in India’s upcoming smart cities. Smart and Sustainable Built Environment, 5(04), 372-92.

Hopkins, E A (2016) Barriers to adoption of campus green building policies. Smart and Sustainable Built Environment, 5(04), 340-51.

Hussein, D (2020) A user preference modelling method for the assessment of visual complexity in building façade. Smart and Sustainable Built Environment, 9(04), 483–501.

Khan, N A, Ullah Khan, S, Ahmed, S, Farooqi, I H, Hussain, A, Vambol, S and Vambol, V (2019) Smart ways of hospital wastewater management, regulatory standards and conventional treatment techniques. Smart and Sustainable Built Environment, 9(04), 727–36.

Konstantinou, T, de Jonge, T, Oorschot, L, El Messlaki, S, van Oel, C and Asselbergs, T (2019) The relation of energy efficiency upgrades and cost of living, investigated in two cases of multi-residential buildings in the Netherlands. Smart and Sustainable Built Environment, 9(04), 615–33.

Krueger, K, Stoker, A and Gaustad, G (2019) “Alternative” materials in the green building and construction sector. Smart and Sustainable Built Environment, 8(04), 270–91.

Kumar, A, Jain, S and Yadav, D (2020) A novel simulation-annealing enabled ranking and scaling statistical simulation constrained optimization algorithm for Internet-of-things (IoTs). Smart and Sustainable Built Environment, 9(04), 675–93.

Kumar, V, Hundal, B S and Kaur, K (2019) Factors affecting consumer buying behaviour of solar water pumping system. Smart and Sustainable Built Environment, 8(04), 351–64.

Lau, J L and Hashim, A H (2019) Mediation analysis of the relationship between environmental concern and intention to adopt green concepts. Smart and Sustainable Built Environment, 9(04), 539–56.

Lau, J L, Hashim, A H, Samah, A A and Salim, A S S (2016) Understanding the environmental worldviews of Malaysian project managers. Smart and Sustainable Built Environment, 5(04), 307-24.

  • Type: Journal Article
  • Keywords: sustainability; environmental concern; green building; pro-environmental behaviour; Malaysian developer organization; new ecological paradigm
  • ISBN/ISSN:
  • URL: https://doi.org/10.1108/SASBE-06-2016-0012
  • Abstract:
    Purpose The purpose of this paper is to examine the dimensionality of the environmental concern scale (NEP) and to understand the environmental worldviews of Malaysian project managers. Design/methodology/approach A cross-sectional survey was conducted among developer organisations registered with Real Estate and Housing Developers’ Association Malaysia in Klang Valley. Response was obtained from project managers and the final sample collected was 87 cases, representing a response rate of 24.5 per cent. Principal component analysis with varimax rotation was conducted to investigate the underlying structure of the NEP items while frequency distribution for the data set was used to gauge the environmental worldviews of the respondents. In addition, face-to-face interviews were carried out to gather more information to complements the findings of quantitative analyses. Findings Five factors were extracted but due to heavy cross-loadings, two items from the original scale were dropped, reducing it to be a 13-item scale. The four factors retained explained 61.6 per cent of the variance and were duly named Human over nature, ecocrisis, rights of nature and limits of growth. High scores on both pro-NEP and pro-dominant social paradigm items revealed the co-existence of both ecological and utilitarian view of the environment among project managers. Similar outcome was obtained from interviews with project managers where they indicated efforts in finding compatibility between protecting the environment and exploiting natural resources for development. Research limitations/implications The sample was restricted to housing developers in Klang Valley, thus the findings cannot be generalised to all developer organisations or other construction occupational groups. Practical implications This research supported the multidimensionality claim of the environmental scale (NEP) where four distinctive dimensions were identified. The usage of individual subscales in understanding environmental beliefs may reveal interesting patterns in that each dimension could have positive and negative connotations on human behaviours. In addition, the co-existence of both an ecological and a utilitarian view of the environment revealed that these worldviews align well with sustainable development principles. Originality/value This study is one of the few local studies that attempt to understand the environmental worldviews of project managers.

Loyola, M (2019) A method for real-time error detection in low-cost environmental sensors data. Smart and Sustainable Built Environment, 8(04), 338–50.

Moshtaghian, F, Golabchi, M and Noorzai, E (2020) A framework to dynamic identification of project risks. Smart and Sustainable Built Environment, 9(04), 375–93.

Ndlangamandla, M G and Combrinck, C (2019) Environmental sustainability of construction practices in informal settlements. Smart and Sustainable Built Environment, 9(04), 523–38.

Opawole, A, Babatunde, S O, Kajimo-Shakantu, K and Ateji, O A (2020) Analysis of barriers to the application of life cycle costing in building projects in developing countries. Smart and Sustainable Built Environment, 9(04), 503–21.

Opoku, D J, Ayarkwa, J and Agyekum, K (2019) Barriers to environmental sustainability of construction projects. Smart and Sustainable Built Environment, 8(04), 292–306.

Prakash, A (2019) Smart Cities Mission in India: some definitions and considerations. Smart and Sustainable Built Environment, 8(04), 322–37.

Rahman, F, Rowlands, I and Weber, O (2017) Do green buildings capture higher market valuations and lower vacancy rates? A Canadian case study of LEED and BOMA-BEST properties. Smart and Sustainable Built Environment, 6(04), 102-15.

Saadi, A and Belhadef, H (2020) Deep neural networks for Arabic information extraction. Smart and Sustainable Built Environment, 9(04), 467–82.

Sahebzadeh, S, Dalvand, Z, Sadeghfar, M and Heidari, A (2018) Vernacular architecture of Iran’s hot regions; elements and strategies for a comfortable living environment. Smart and Sustainable Built Environment, 9(04), 573–93.

Shooshtarian, S and Ridley, I (2016) Determination of acceptable thermal range in outdoor built environments by various methods. Smart and Sustainable Built Environment, 5(04), 352-71.

Susilo, A, Fitriah, F, Sunaryo, Ayu Rachmawati, E T and Suryo, E A (2020) Analysis of landslide area of Tulung subdistrict, Ponorogo, Indonesia in 2017 using resistivity method. Smart and Sustainable Built Environment, 9(04), 341–60.

Tunji-Olayeni, P, Kajimo-Shakantu, K and Osunrayi, E (2020) Practitioners' experiences with the drivers and practices for implementing sustainable construction in Nigeria: a qualitative assessment. Smart and Sustainable Built Environment, 9(04), 443–65.

van Stijn, A and Gruis, V (2020) Towards a circular built environment. Smart and Sustainable Built Environment, 9(04), 635–53.

Xia, B, Rosly, N, Wu, P, Bridge, A and Pienaar, J (2016) Improving sustainability literacy of future quantity surveyors. Smart and Sustainable Built Environment, 5(04), 325-39.