Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 57 results ...

Abrahams, G (2017) Constructing definitions of sustainable development. Smart and Sustainable Built Environment, 6(01), 34-47.

Arslan, M, Cruz, C, Roxin, A and Ginhac, D (2018) Spatio-temporal analysis of trajectories for safer construction sites. Smart and Sustainable Built Environment, 7(01), 80–100.

Asif, M, Hassanain, M A, Nahiduzzaman, K M and Sawalha, H (2019) Techno-economic assessment of application of solar PV in building sector. Smart and Sustainable Built Environment, 8(01), 34–52.

Baker, D and Mahmood, M N (2012) Developing tools to support complex infrastructure decision-making. Smart and Sustainable Built Environment, 1(01), 59-72.

Baker, D and Mahmood, M N (2012) Developing tools to support complex infrastructure decision-making. Smart and Sustainable Built Environment, 1(01), 59-72.

Bebelaar, N, Braggaar, R C, Kleijwegt, C M, Meulmeester, R W E, Michailidou, G, Salheb, N, van der Spek, S, Vaissier, N and Verbree, E (2018) Monitoring urban environmental phenomena through a wireless distributed sensor network. Smart and Sustainable Built Environment, 7(01), 68–79.

Birkeland, J L (2016) Net positive biophilic urbanism. Smart and Sustainable Built Environment, 5(01), 9-14.

Bonyad, R, Hamzenejad, M and Khanmohammadi, M (2018) Ranking the regenerative architecture indicators for assessment of research-educational building projects in Tehran, Iran. Smart and Sustainable Built Environment, 9(01), 27–37.

Brandon, P (2012) Sustainable development: ignorance is fatal - what don. Smart and Sustainable Built Environment, 1(01), 14-28.

Brandon, P (2012) Sustainable development: ignorance is fatal - what don't we know?. Smart and Sustainable Built Environment, 1(01), 14-28.

Brynskov, M, Heijnen, A, Balestrini, M and Raetzsch, C (2018) Experimentation at scale: challenges for making urban informatics work. Smart and Sustainable Built Environment, 7(01), 150–63.

Burton, C A, Ryan, C, Rismanchi, B and Candy, S (2019) Urban shared energy systems and behaviour change - simulating a common pooled resource problem. Smart and Sustainable Built Environment, 9(01), 17–26.

Contarini, A and Meijer, A (2015) LCA comparison of roofing materials for flat roofs. Smart and Sustainable Built Environment, 4(01), 97-109.

De Waegemaeker, J, Kerselaers, E, Van Acker, M and Rogge, E (2017) Design workshops in the age of climate change: Analysis of a design workshop on drought in Flanders. Smart and Sustainable Built Environment, 6(01), 48-63.

Dritsa, D and Biloria, N (2018) Towards a multi-scalar framework for smart healthcare. Smart and Sustainable Built Environment, 7(01), 33–52.

Foth, M (2018) Participatory urban informatics: towards citizen-ability. Smart and Sustainable Built Environment, 7(01), 4–19.

Gholami, M, Mofidi Shemirani, M and Fayaz, R (2018) A modelling methodology for a solar energy-efficient neighbourhood. Smart and Sustainable Built Environment, 7(01), 117–32.

Glass, J (2012) The state of sustainability reporting in the construction sector. Smart and Sustainable Built Environment, 1(01), 87-104.

Glass, J (2012) The state of sustainability reporting in the construction sector. Smart and Sustainable Built Environment, 1(01), 87-104.

Goel, A (2019) Sustainability in construction and built environment: a “wicked problem”?. Smart and Sustainable Built Environment, 8(01), 2–15.

Guven, H and Tanik, A (2018) Water-energy nexus. Smart and Sustainable Built Environment, 9(01), 54–70.

Haeusler, M H, Hespanhol, L and Hoggenmueller, M (2018) ParticipationPlus. Smart and Sustainable Built Environment, 7(01), 133–49.

Hajji, A M and Lewis, P (2013) Development of productivity-based estimating tool for energy and air emissions from earthwork construction activities. Smart and Sustainable Built Environment, 2(01), 84-100.

Hussein, D, Sarkar, S and Armstrong, P (2018) Mapping preferences for the number of built elements. Smart and Sustainable Built Environment, 7(01), 53–67.

Hwang, Y H, Feng, Y and Tan, P Y (2016) Managing deforestation in a tropical compact city (Part B): Urban ecological approaches to landscape design. Smart and Sustainable Built Environment, 5(01), 73-92.

Ismail, Z-A (2017) Maintenance management system (MMS) to support facilities management at Malaysian polytechnic. Smart and Sustainable Built Environment, 6(01), 19-33.

Kayan, B A (2015) Conservation plan and “green maintenance” from sustainable repair perspectives. Smart and Sustainable Built Environment, 4(01), 25-44.

Kellert, S (2016) Biophilic urbanism: the potential to transform. Smart and Sustainable Built Environment, 5(01), 8-18.

Kleerekoper, L, van den Dobbelsteen, A A J F, Hordijk, G J, van Dorst, M J and Martin, C L (2015) Climate adaptation strategies: achieving insight in microclimate effects of redevelopment options. Smart and Sustainable Built Environment, 4(01), 110-36.

Kokkarinen, N, Shaw, A, Cullen, J, Pedrola, M O, Mason, A and Al-Shamma’a, A (2014) Investigation of audible carbon monoxide alarm ownership: Case study. Smart and Sustainable Built Environment, 3(01), 72-86.

Littke, H (2016) Becoming biophilic: Challenges and opportunities for biophilic urbanism in urban planning policy. Smart and Sustainable Built Environment, 5(01), 15-24.

Littke, H (2016) Becoming biophilic: Challenges and opportunities for biophilic urbanism in urban planning policy. Smart and Sustainable Built Environment, 5(01), 15-24.

Lombardi, P and Ferretti, V (2015) New spatial decision support systems for sustainable urban and regional development. Smart and Sustainable Built Environment, 4(01), 45-66.

Meng, X (2014) The role of facilities managers in sustainable practice in the UK and Ireland. Smart and Sustainable Built Environment, 3(01), 23-34.

Miller, W and Buys, L (2013) Factors influencing sustainability outcomes of housing in subtropical Australia. Smart and Sustainable Built Environment, 2(01), 60-83.

Muehlbauer, M (2018) Towards typogenetic tools for generative urban aesthetics. Smart and Sustainable Built Environment, 7(01), 20–32.

Nourian, P, Rezvani, S, Valeckaite, K and Sariyildiz, S (2018) Modelling walking and cycling accessibility and mobility. Smart and Sustainable Built Environment, 7(01), 101–16.

Papageorgiou, G and Demetriou, G (2020) Investigating learning and diffusion strategies for sustainable mobility. Smart and Sustainable Built Environment, 9(01), 1–16.

Pisello, A L, Xu, X, Taylor, J E and Cotana, F (2012) Network of buildings. Smart and Sustainable Built Environment, 1(01), 73-86.

Pisello, A L, Xu, X, Taylor, J E and Cotana, F (2012) Network of buildings' impact on indoor thermal performance. Smart and Sustainable Built Environment, 1(01), 73-86.

Roggema, R, Kabat, P and Dobbelsteen, A v d (2012) Towards a spatial planning framework for climate adaptation. Smart and Sustainable Built Environment, 1(01), 29-58.

Roggema, R, Kabat, P and Dobbelsteen, A v d (2012) Towards a spatial planning framework for climate adaptation. Smart and Sustainable Built Environment, 1(01), 29-58.

Saade, M R M, Silva, M G d, Gomes, V, Franco, H G, Schwamback, D and Lavor, B (2014) Material eco-efficiency indicators for Brazilian buildings. Smart and Sustainable Built Environment, 3(01), 54-71.

Sarker, R I, Mailer, M and Sikder, S K (2019) Walking to a public transport station. Smart and Sustainable Built Environment, 9(01), 38–53.

Selberherr, J (2015) Sustainable life cycle offers through cooperation. Smart and Sustainable Built Environment, 4(01), 4-24.

Settembre Blundo, D, García-Muiña, F E, Pini, M, Volpi, L, Siligardi, C and Ferrari, A M (2019) Sustainability as source of competitive advantages in mature sectors. Smart and Sustainable Built Environment, 8(01), 53–79.

  • Type: Journal Article
  • Keywords: Sustainability; Competitive advantage; Industrial district; Circular business model (CBM); Italian ceramic industry; Life Cycle Sustainability Assessment (LCSA);
  • ISBN/ISSN: 2046-6099
  • URL: https://doi.org/10.1108/SASBE-07-2018-0038
  • Abstract:
    The purpose of this paper is to explore how sustainability can become a source of competitive advantage for mature manufacturing sectors where technologies are standardized, and innovation is mainly generated across the value chain and not by individual companies. Design/methodology/approach From the methodological point of view, this research estimates the sustainability status of ceramic production in the Sassuolo district (Italy), using the Life Cycle Sustainability Assessment (LCSA) model, and changing the observation point for the analysis, from the enterprise (micro level) to the entire sector (meso level). Findings This paper provides an analysis of the environmental, economic and social impacts of the four main types of ceramic tiles manufactured in Italy, both in aggregate terms for the entire sector and per square meter of product. Practical implications The methodological approach used in this research is easy to replicate both for companies when designing their sustainability strategies and for public decision makers when assessing the sustainability performance of a sector or supply chain. Social implications For the first time, a socio-economic impact assessment is proposed for the ceramic sector, conducted in parallel with the environmental impact assessment through stakeholder mapping and prioritization. Originality/value This paper conceptualizes the theme of relations and interdependencies between ceramic producers organized in industrial districts and the territories in which they operate in order to determine empirically the sustainability performance of Italian ceramic sector, using the LCSA model with a territorial extension that presupposes an innovative contribution to current literature and practice.

Shen, Q, Wang, H and Tang, B-s (2014) A decision-making framework for sustainable land use in Hong Kong's urban renewal projects. Smart and Sustainable Built Environment, 3(01), 35-53.

Siew, R Y J, Balatbat, M C A and Carmichael, D G (2013) The relationship between sustainability practices and financial performance of construction companies. Smart and Sustainable Built Environment, 2(01), 6-27.

Singhaputtangkul, N (2017) A decision support tool to mitigate decision-making problems faced by a building design team. Smart and Sustainable Built Environment, 6(01), 2-18.

Slagstad, H and Brattebø, H (2013) Use of LCA to evaluate solutions for water and waste infrastructure in the early planning phase of carbon-neutral urban settlements. Smart and Sustainable Built Environment, 2(01), 28-42.

Stremke, S and Schöbel, S (2019) Research through design for energy transition: two case studies in Germany and The Netherlands. Smart and Sustainable Built Environment, 8(01), 16–33.

Tan, P Y, Feng, Y and Hwang, Y H (2016) Deforestation in a tropical compact city (Part A): Understanding its socio-ecological impacts. Smart and Sustainable Built Environment, 5(01), 47-72.

Thomsen, J, Berker, T, Hauge, Å L, Denizou, K, Wågø, S and Jerkø, S (2013) The interaction between building and users in passive and zero-energy housing and offices: The role of interfaces, knowledge and user commitment. Smart and Sustainable Built Environment, 2(01), 43-59.

Windapo, A O and Goulding, J S (2015) Understanding the gap between green building practice and legislation requirements in South Africa. Smart and Sustainable Built Environment, 4(01), 67-96.

Yang, J (2012) Editorial: promoting integrated development for smart and sustainable built environment. Smart and Sustainable Built Environment, 1(01), 4-13.

Young, R F (2016) The biophilic city and the quest for paradise. Smart and Sustainable Built Environment, 5(01), 25-46.

Zainul Abidin, N and Amir Shariffuddin, N A (2019) Engaging consultants in green projects: exploring the practice in Malaysia. Smart and Sustainable Built Environment, 8(01), 80–94.